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Pictorial Representation of Anisotropy and Macroscopic Reorientations of Samples in
Solid-State NMR: First-Order Interactions
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In solid-state NMR, spectra of powdered samples are dominated by the anisotropy of the involved interactic
All internal interactions can be described by second-rank tensors, which account for the observed broade
of the lines. A well-known representation of these tensorial effects is the so-called “representation ellipsoi
It allows a direct pictorial representation of any first-order interaction. However, an ellipsoid can be defing
only for strictly positive principal components of a given tensor. More complicated surfaces, such as ovaloi
were introduced recently for the direct representation of tensorial properties and for every set of princi
components. In this paper, we show that the “representation ellipsoid” can be extended to generalized qua
(including cylinders, hyperboloids, and degenerate surfaces), avoiding the use of ovaloids. Moreover, s
quadrics can be used for a very simple representation of macroscopic reorientation techniques of sam
such as magic-angle spinning, variable-angle spinning, and switching-angle spinning, as well as for
description of rapid anisotropic molecular motions. No explicit reference to Legendre polynomials was ma
This article is the first step for a Cartesian representation of higher-order NMR interactions and higher-or
macroscopic trajectories such as dynamic-angle spinning, double-rotation, or multiple-quantum magic-ar
spinning.

1. Introduction orientation of By from the ellipsoid axes varies from one
crystallite to another in a powder sample, a direct representation

In the presence of a large external static fiBlg solid-state . . . . . u
NMR spectra of powders are usually characterized by broad, of the Interaction anisotropy Is obtained. Howev_er, the “rep-
resentation ellipsoid” implies that the three semiaxes can be

featureless lines even in the case of simple systems involvin ) oo
pe sy gdeflned. In other words, the three principal components of the

one or few crystallographic sites. Indeed, all internal inter- * ; o
actions that are present at a given nucleus (such as chemica; iven tensor must be _stnctly positive. Recently, se_veral authors
ave developed a different pictorial representation based on

shielding, homo- and/or heteronuclear dipolar coupling, qua- 8o i . S
drupolar interaction) can be described by second-rank tehsors, ©valoids®® This representation holds for every set of principal
components, including zero and/or negative principal compo-

It follows that the spin interactions depend on the orientation In thi ic| h hat th : loid hich
of By relative to each principal axes system (see below) related nents. In é IS art_lcr?,dwe show tfatt € use ot ovaloids (w IE:I’h
to the nucleus of interest; therefore, frequency dispersion is correspond to sixth-degree surfaces) is not necessary. €

observed. In the case of powdered samples (involving for “representation ellipsoid” can be easily extended to generalized
instance one unique crystallographic site), integration over the 9uadrics (second-degree surfaces, including degenerate cases

crystallite’s orientation distributidhleads to the well-known accounting for every set of principal components. Empha3|s
“powder patterns’, characteristic for the various spin inter- will be made on traceless tensors, related for instance to dipolar

actions: chemical shift anisotropy (CSARake doublétfor or quadrupolar interactions. Generalized quadrics will also be
dipolar coupling or first-order quadrupolar interaction for spin US€d for the pictorial representation of fast molecular reorienta-
| = 1, central transition and satellites pattérfts | = n/2 (n = tions (and their effects on anisotropies) and two-dimensional

3, 5, 7, 9), central transition broadened by second-order COrelations between interactions. . .

quadrupolar interactiohand so forth. Several interactions of 10 retrieve resolution in a solid-state NMR experiment, spatial
the same order of magnitude may be present, leading to complex@Nisotropies must be removed. In the case of an isotropic liquid,
line shapes. The resolution is definitively lost when several rapid and random_ molecular reorientation elm_unates anisotropic
broad lines overlap. Several pictorial representations of tensorsSPectral broadening. Narrow lines are obtained, and only the
have been given in the literature, accounting at least for first- 1SOtropic components of the spin interactions (related to the
order effects of the different NMR interactions. The most traces of the involved tensors) are thus measured. In solid-
popular representation is the so-called ‘representation el- Stat® NMR, high-resolution spectra can be obtained by either
lipsoid”.2” This approach is essentially Cartesian (involving 3 2averaging in spin spaéand/or averaging in real space. In this

x 3 matrices) and has been applied to many symmetrical work, we shall focus on averaging in real space. As shown
second-rank physical propertiéslt can be shown that the  firstby Andrew!? and Lowe!! rapid reorientation of a powder

intersection of this ellipsoid in thiy direction is directly related ~ Sa@mple around the “magic-anglé”= {m = 54.74 or magic-
to the magnitude of any first-order perturbation. As the angle spinning (MAS) can remove anisotropies related to first-
order interactions. MAS is a routine technique of solid-state
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is based on the general transformation properties of second-i~*Hr =AkTT[T]YT, following the notations given by Harr#s.
rank tensors under rotation, including the irreducible spherical The spinl corresponds to the nucleus of intereét;is another
representation of tensors, Wigner rotation matrices, and thevector quantity. ForT] = [a], Ys= Bo. For [T] =[D], Yo =
second-order Legendre polynomid(cos ) (6 corresponds S (a spin different froml, accounting for homo- and hetero-
to the angle between the rotor axis a&g).12 This approach nuclear dipolar coupling). ForT] = [q], Yo = I. The
was extended recently to the effect of macroscopic reorientation parametekr adjusts the magnitude and dimension of thg [
on line shapes broadened by second-order interactions (such atensor. We suppose thaf]is a symmetrical tensor, and we
second-order quadrupolar interaction). In this case, it is now neglect therefore antisymmetric contributidn&or each tensor

well-known that rapid MAS cannot completely eliminate
anisotropic broadening effects. The ingenious derivation of
Hamiltonians in terms of second- and fourth-order Legendre
polynomialsPx(cos 8) and P4(cos 0) led to the conception of

[T], one can choose a particular axes syst&M4) or principal
axes system (PAS) in whicATT is diagonal. Txx, Tvy, andTzz
are the principal components. When considerimpfs and
the principal components, other quantities can be defined:

new experimental schemes such as dynamic-angle spinning

(DAS), double-rotation (DORY15 and multiple-quantum
magic-angle spinning (MQ-MASf, allowing the total suppres-
sion of second-order effects. More generally, MAS, DAS, and
DOR trajectories have been analyzed in terms of symmetry
imposed to the sample under reorientafibrin this paper, we
give a pictorial representation of MAS (for first-order interac-
tions), taking advantage of the generalized quadrics cited above

Spherical tensors, which are extensively used as far as solid-

state NMR is concerned, are not used in this work. Explicit
reference td?,(cos#) will not be made. A pictorial representa-
tion of magic-angle hopping (MAH} and variable-angle
spinning (VAS}® will be presented as well. It will also be

shown that the generalized quadrics are not suitable for thethe asymmetry:
representation of second-order effects on the line shapes. This

article is the first step for the direct Cartesian representation of
second-order effects by fourth-degree surfaces. It will be shown
that the effects of MAS, VAS, and higher-order trajectories on

the isotropic component: T, = (Tyx + Tyy+ TZZ)/?z2 2)

the anisotropy: two alternative definitions are generally
proposed in the literature

. AT=T,,— (Tyx+ Ty)/2 (2.3a)
O =Tz~ Tio (2.3b)

Tx>< - TYY
T T O=nr=1) (24)

using the convention:
|TZZ - Tiso' = |TYY_ Tiso| z |T><>< - Tiso| (2.5)

guadrupolar nuclei can be easily understood by considering these ] ) )
novel surfaces and simple Cartesian frame transformations. Once Other conventions may be found in the literature. The

again, explicit reference tB,(cos ) andP4(cos ) will not be
necessary.

In this paper, the following plan is adopted: section 2 is
devoted to the direct pictorial representation of first-order NMR
interactions by quadrics. This section gives general rules for
the representation. Applications of this representation to the
effect of molecular reorientation and to 2D correlations in static
NMR experiments are presented in section 3. The description
of the effects of MAS, MAH, and VAS are given in sections 4,
5, and 6, respectively. Finally, the reorientation of samples
around two axes (fof = 1/2) and higher-order interactions
are described in section 7.

2. Representation of First-Order Interactions

In the presence of a strong external magnetic figddthe
relevant Hamjltoning relgted to the nucleus of interest can
be written asH = Hey + Hint, wheré-20

~

He =

A~

+ Hge

int —

H,
+

I

Hpe=H, + Ho+ Hy+ Hgg (2.1)

D

The external interactions correspond to the Zeentds) @and
radiofrequencyKlrF) Hamiltonians. TheAdif'ferent terms Hint
correspond to the shielding interactioll), homo- and het-
eronuclear dipolar coupling+p), quadrupolar interactiorHg

if | > 1/2), indirect couplingkl,), and spir-rotation interaction
(HsR). In this paper, we focus ohl,, Hp, andHg, as they
represent the most important NMR interactions. However, the

different PAS are not necessarily coincident. In the respective
PASs

Ooxx 0 0
kol =70 ow 0O (2.6)
0 0 07z
1 0 O
k[D]=27D[0 1 0 (2.7a)
0 0 -2
_Ho h 1s
~ 2, (2.7b)
1-S
> Oxx O 0
eQ
kolal = ~—{0 Gvw O (2.8)
2@ -1, o o,

r—s corresponds to the internuclear distance. The ter3pr [
is axially symmetric fp = 0) and tracelessQ corresponds to
the quadrupole moment of the nucleus. Fer X, Y, andZ,
eqgi = Vi andV; are the Cartesian components of the electric
field gradient (EFG). This tensor is not necessarily axially
symmetric {jo may be different from zero) but is traceless (in
agreement with the Laplace equation, thafisy 4i = 0).

To estimate the effects of anisotropy on the line shapes, the
diagonal tensor T]pas must be expressed in the laboratory
(LAB) frame (XoYoZo) where theByp direction andZ, are

results derived for these three interactions may be extended tocoincident. The LAB frame is derived from the PAS frame by

the others. All internal interactiodts 1H (in angular velocity
units) may be represented by second-rank tengdrsych that

the Euler angleso(,f0,y0) Which are given in Figure 1. The
expression of T] in the LAB frame is then given by
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[T,z =
Tex O 0
P_l(aoiﬁoﬁ/o) 0 Tyy O P(0,B0:70) (2.9)
0 0 T2z (pas)

Pis given in the Appendix. Moreovel, = P. When dealing
with secular parts of the different Hamiltonians and restricting
ourselves to first-order perturbation effects, only the t&up,

in [T]xvozo) IS relevant. Using eq 2.9,

T

2.2, = COS 04 SIIF o Ty + Sir’ ot SiN’ B Tyy +

cog B, T,, (2.10)

In a powder samplélzz, represents the magnitude of the tensor
[T] for a particular crystallite. For this crystallite, the orientation
of By in the PAS is given as in Figure 1. Using eqs-225
and 2.6-2.8, we deduce the NMR line positions of the spectrum
for a given orientation of crystallite when considering the
different interactions:

shielding interaction: v = Zln o(1 = 0z72) (2.11)
07,7, IS given by eq 2.10 or
= 0+ 523 c08 ir?
02.2,= Oiso+ ?(3 cos By, — 1+ n, sin” B, cos dx,)
(2.12a)
— 1 2 1 . 7

OZOZO = Oiso + (6A)0 5(3 co ﬁO - l) + 577(; SI ﬁO Cos 210

(2.12b)

dipolar coupling: for an isolated heteronucléaiSspin system,
two | lines are observed at

Vp = :I:lDD

DDz, (2.13)

D,, =1—3co$f, (2.14)
Dis givenin eq 2.7b. In the case of homonuclear dipolar two-
spin interaction

Vp = :|:§DDZOZO

. (2.15)

Again, D is given in eq 2.7b withy, = ys = y. Dgzgz, is given
by eq 2.14.

quadrupolar interaction: the expression for a transition
fromm, tom, —1 is given by

_3(1—2m) ez_Q

T g2—1) h %z (2.16)

Again, gz,z, is given by eq 2.10 or
=1 g ir?
Ozz, = §sz(3 COS By — 1+ ng sin fycos D)  (2.17)

€qz2Q/h is the quadrupole coupling constant. Hoe n/2 (n
=3, 5, 7,9), the central transitiom( = 1/2) is not shifted by
the first-order quadrupolar interactionm, = 1/2 corresponds
to the (2 — 1) satellites. Forg = 0,
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Figure 1. Definitions of the Euler anglesug,f80,y0) transforming a
given PAS frameXY2 into the LAB frame KoYoZo): (a) PAS frame

is rotated counterclockwise around tEeaxis by ao. This rotation
generates a new fram&'{('2); (b) counterclockwise rotation of the
(X'Y'Z) frame aroundY’ by 5o generates a second intermediate frame
(X"Y'Zy); (c) this second intermediate frame is rotated counterclockwise
by yo aroundZ,, resulting in the XoYoZo) LAB frame. Using these
definitions, 00 and 5o represent the polar angles of tBgdirection in

the PAS.

1 0 O
[q] = — EqZZ 0 1 0 (2.18)
0 0 -2

It is interesting to note that this tensor can be compare®}o [
described by eq 2.7a.

As stated above, the role d%, is crucial. We shall now
give a pictorial representation of this quantity. First, we restrict
ourselves to strictly positive principal components; thaTiis
>0(=XY,2. Inthe PAS, we consider the quadric given
by

T+ T+ T,,22 =1 (2.19)
This quadric is an ellipsoid (Figure 2a), whose semiaxes are
(Ti)"Y2. WhenBy is oriented from the PAS by the Euler angles
(0o,BorV0) (Figure 1),Bg is located in the plane containing the
X'(0p) and Z axes. The intersection between this plane and
the ellipsoid is an ellipse, whose equationXifo)Z is

(cog 0 Tyy + SiM oy TyX2+ T,,.2° =1 (2.20)
The radiug corresponding to the intersection of the ellipse with
the By direction (Figure 2a) is then easily derived, usiKig=
r sin o, Z =r cospo, and eq 2.20. One obtains

r = (cog o, Sin By Tyx + SINF 0 SINF B Tyy +
co B, T,) 2 (2.21a)

Using eq 2.10, it follows that
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Figure 3. Pictorial representation of anisotropic first-order interactions
S 4 for Txx > 0, Tyy > 0, andTz < 0. Intersections by the plane containing
%{"—% Bo, and theX'(a)) andZ axes are also given. (a) Elliptical hyperboloid
x?_;:ﬁ"é} — of one sheet. Whefi, > W(0), the equationt-r=2 = Tz, holds. The
- sign of the first member of the equation is emphasizee: (cos oo
Figure 2. Pictorial representation of anisotropic first-order interactions  Txx T Sif? 0o Tyy) % tg?W(a) = [Tzzl/(COS ap Txx + Sir? ap Tyy).

for various{T;} sets. Intersections with the plane containBgand (b) Elliptical hyperboloid of two sheets. Whgg < W(ay), the equation
the X'(ao) andZ axes are also given. Thed,3o) angles are the polar ~ —'2 = Tz, holds. The sign of the first member of the equation is
angles ofB, and are referred to Figure 1. (&)x > 0, Tyy > 0, andTz emphasizedF = |Tz7| "2
>0 (eIIIpSOId)A = (COS2 oo Txx + Siré Qo Tyy)fl/z; B= (Tzz)fllz. (b) i
Tux > 0, Tyy > 0, andTzz = 0 (elliptical cylinder).C = (cog ao Txx WhenTxx = Tyy= 0 andTzz > 0, eq 2.19 becomes (in the
+ sir? ap Tyy) ™2 () Txx = Tyy = 0, andTzz > 0 (parallel planes)d PAS)
= (TZZ)*I/Z.
T,,Z2=1 2.23
UP=T,, (2.21b) # (223)

. ) . ) _ The associated quadric is degenerate and corresponds to twe
Equation 2.21b gives a simple geometrical representation of parajlel planes (Figure 2c). The intersection of these parallel
Tzz,- It corresponds to the well-known “representation el- planes by theX' (a)Z plane corresponds to two parallel straight
lipsoid” related to symmetrical second-rank tensors, which is |ipes. Again, elementary geometry allows us to relgtgo,
extensively used in crystal physicsr in solid-state NMR. It andd (see Figure 2c), as cq& = dir. It follows thatr =
can be noted that faxo = 45° andfo = &m, 12 = (Txx + Tvy (€02 Bo Tzz) Y20rr—2= Ty, This expression is independent
+T22)/3 = Tiso. When [I] = [o], 0iso COrresponds to the  of o, as the tensor is axially symmetric. Whgn— 90°, r —
isotropic shielding at the nucleus, which may be observed in andTzz, — 0. The zero principal components are attained.
liquid-state NMR (neglecting solvent effects). Limitations of WhenTxx > 0, Tyy > 0, andTzz < 0, eq 2.19 becomes
this representation are easily understood by considering the
expressions of the semiaxes, thatTig)(¥2 It imposes thaT; T X2+ ToYo— T, 22 =1 (2.24)
> 0. ForT; = 0and/orT; < 0, no real ellipsoid can be defined. X v z
Other surfaces can be used, such as ovaffid©valoids ~ This sjtuation is encountered in the case of the dipolar or

correspond to sixth-degree surfaces. In fact, the use of ovaloidsyyadrupolar interactions (see egs 2.7a, 2.8, and 2.18). The
is not necessary and generalized quadrics (second-degrego|iowing description is therefore particularly suitable for these
surfaces) are suitable for the pictorial representatioigf.  interactions. Equation 2.24 corresponds to an elliptical hyper-
The expressions of these quadrics in the PAS are directly derivedy)oid of one sheet. One should note that this surface is not
from eq 2.19. Three examples involving zero and negative necessarily of revolution, ag may be different from zero (the

principal components will now be given. . caseyr = 0 will be emphasized in section 3 and in Figure 5,
WhenTxx > 0, Tyy > 0, andTzz = 0, eq 2.19 becomes (in  \yhen dealing with the heteronuclear dipolar interaction). The
the PAS) intersection of this hyperboloid by th¥(op)Z plane corre-

TXXXZ I TYYY2 -1 (2.22) sponds to a hyperbola, whose equatiorXifog)Z is

H 12 2
This equation corresponds to an elliptical cylinder (Figure 2b). (C°§ O Tyx sirt % Ty X~ T2 =1 (2.25)
The intersection of this cylinder by the(c)Z plane corre-
sponds to two parallel straight lines. Elementary geometry
allows us to relate, 5o, andC (see Figure 2b) as sjpy = CIr.

This hyperbola exhibits two asymptotes, oriented franby
W(ay) (see Figure 3a). The expressiont@(ay) can be easily

It follows thatr = (co€ oo Sir? o Txx + Sif? oo Si? fo Tyy) 12 derived, using =r'sinfio, Z =1 cosfo, €q 2.25, and — co.
Again, r2 = Ty, demonstrating the direct relation between 't follows that

these two quantities. One notes tfigt— 0 leads ta — o, as T,

can be seen from Figure 2b, afidz, — 0. In other words, tPW (ap) = 22 (2.26)
when Bg is parallel to theZ axis of the PAS, thelz; (=0) cos o Tyx + sir? 0o Tyy

principal component is attained. Whep = 45° andfo = {m,
r—2 = (Txx + Tyy)/3 = Tiso. In this particular caseTiso > 0. Assuming thaj, > ¥(ap) and using eq 2.25, the intersection
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Comadri guadrics become surfaces of revolution (the axis of revolution
corresponds to th&zz principal component). Whem; = Tiso
(for i = X, Y, 2), the quadric is a sphere of radiuBsf) 22
g WhenTis, = 0, the radius of the sphere becomes infinite, and

Tux | Tyy LE=
Evlipraia

this highly degenerate quadric can be represented by a unique
| - point. It will be seen below that these generalized quadrics are
cilipgival cyilnder suitable not only for the direct representation of anisotropy in
solid-state NMR but also for the pictorial representation of MAS,
VAS, and so on. Before considering the effects of macroscopic
sample reorientations, we illustrate two static experiments by
using quadrics, that is, static NMR in the presence of rapid
molecular reorientation and 2D correlation experiment involving
CSA and dipolar coupling. The use of quadrics exhibiting
negative principal components will be emphasized.

3. Solid-State NMR in the Presence of Molecular Re-
orientation and 2D Correlations. First, we illustrate the effect
o ik ih . of rapid molecular reorientation on NMR interactions. The
heteronuclear dipolar interaction of an isolateds spin pair is
considered. Following eq 2.7a, the geometrical part of the
dipolar interaction is well described by the tensor

1 0 O
0 1 O
0O 0 -2

As stated above, this tensor can be represented by a set of twc
complementary hyperboloids of revolution ¢as= 0), whose
equations in the dipolar PAS are

Figure 4. Generalized quadrics representing first-order interactions

for every se{ T} of positive, negative, and zero principal components
AR AL J principat comp X+ Y2 — 272 = +1 (3.1)

radiusr is then given byr=2 = co< ayp Sir? Bo Txx + sir? ag The I-S bond direction corresponds to tieaxis of the PAS
Sir? Bo Tyy — co fBo | Tzzl. Comparing this expression and eq and to the axis of revolution of the hyperboloids (Figure 5a).
2.10, it follows that+r=2 = Tzz. The sign+ is emphasized Using eq 2.26{g?Y = 2 or ¥ = {y. One notes thaW is
in this expression as well as in Figure 3a. Whikn—~ W(ayp), independent ofiy, as the tensor is axially symmetric. Symbols
Tzz, — 0. The zero value of the tensor compon@ijz, is — and+ in Figure 5 are referred ter—2 = Dz, and to-+r—2
attained, but in this case it does not correspond to a principal = Dzz, when o varies from 0 to 9C°. It is then possible to
component. Whery, < W(ay), the By direction does not represent half of the derived Pake doublet corresponding to
intersect the hyperbola presented in Figure 3a. However, one= +(D/2) (1 — 3 co% f3o) (see egs 2.13, 2.14 and Figure 5b).
can use the complementary quadric, whose equation in the PASThe second branch of thie-S Pake doublet is obtained by
is symmetry. FopBo = {m, r — o and the zero value of the tensor
is attained: the dipolar splitting vanishes when theS spin
T X+ Ty Yo — [T, 22 = -1 (2.27) pair is at the “magic-angle” from thBy field.
It was observed for a long time that rapid anisotropic
Equation 2.27 corresponds to an elliptical hyperboloid of two molecular reorientation led to partial averaging of the different
sheets (which is not necessarily of revolution) (Figure 3b). The interactions-?? We illustrate such averaging by considering
intersection of this hyperboloid by the(ag)Z plane corre- averaged hyperboloids, representing the effect of motion. We
sponds to a hyperbola, of which the equatiorXi(o)Z is suppose that the-S pair reorients rapidly around a molecular
axis Zy, which makes the anghe with |—S (Figure 6a, withy
—(cog 0 Ty + SiP oy Ty)X2 + [T,|Z2=1  (2.28) > W = {y). The rotation of the associated set of hyperboloids
(Figure 5a) around the molecular axis leads to averaged surfaces
Assuming thapl < ¥(ay), and using eq 2.28, the intersection These new quadrics are surfaces of revolution, with the
radiusr is then given by 2 = —cog ay sir? fo Txx — SI? a, molecular axiZv as the new axis of revolution. The averaged
Sir? Bo Tyy+ €o$ Bo | TzZ. It follows that—r—2 = Tzz,. Again, principal componenD, associated with this axis is given by
the sign— is emphasized in this expression as well as in Figure the intersection of the old quadrics (Figure 5a) by the molecular
3b. The relation between 2 and Tz, is now different but axis directionZy:
remains easy to visualize. Whelag = 0, —r 2 = —|Tz7 =
T2z and the negative principal component is attained. - 1 _
It has thus been shown that second-rank properties including Dy = ﬁ =1-3 C°§X (3.2)
negative principal components could be represented by a set of x
two complementary hyperboloids, avoiding the use of ovaloids. __
Every set ofT; values (including positive and/or negative and/ Di > 0 asy > W = {m. The second averaged principal
or zero principal components) can be represented by a quadriccomponenDg is given by trace invariance, that i®2 + D, =
(see Figure 4). When two principal components are equal, the0. It follows that
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T
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Figure 5. Pictorial representation of the heteronuclear dipolar interac- Figure 6. Representation of anisotropic motional averaging of the
tion (isolated —Sspin pair). (a) Set of two hyperboloids of revolution  heteronuclear dipolar interaction (isolated spin pair). (a) Fast reorienta-
representing the geometric part of the interactibrand— correspond tion of the|—S pair around the molecular ax&; (x > ¥ = &n). (b)

to the conventions-r~2 = Dz, and —r~2 = Dz, In this casell = Averaged hyperboloids of revolutio® = ((1 — 3 cog y)/2)" V2 H =
Cm. (b) Derived powder pattern (one half). For the three orientations (1 — 3 co€ y)~Y2 (c) Derived powder pattern (one half). For the three
of By, fo = 0°, ¥ = {n and 90, one obtains{r2)p = —2; (+r 2y orientations ofB,, 0 = 0°, ¥ = &n and 90, one obtains£r2)¢ =
=0, (tr 9o = 1 and ¢o)wor = +(D/2)(H+r 2wer; (YD) = 1—-3coy; (+r 3y =0; (—rYgr = —(1 — 3 cog ¥)/2 and §p)o-w
+(DI2)(—r)e; with D = (uoldn)(h/27)(r1ydri o) (see eq 2.7b). = +(DI2)(+r Yo w; (vp)orr = +(DI2)(—r?)er; D as in Figure 5f(x)
=1-3cogy.
— 3coéy—1 _ _ _
Dy = 2 (3.3) due to the dipolar coupling vanishes. The cgase W can be

treated as stated above. Wher= 0, the “static” quadrics
— . . . (Figure 5a) are not affected by the reorientation (as they are of
Do < .0' In the new frame (WittZy as.the unique e_1X|s), the . revolution) and no modulation of the anisotropy is observed.
equations of the new ave.rageql quadr]cs representing the rapi he same approach can be applied to all quadrics presented ir
reorientation of thd =S spin pair are given by Figure 4. It should also be noted that the representation using
2 sets of averaged hyperboloids can be applied to quadrupolar
3cosy—1 X2+ YD)+ (L —3codpz,2=1 (3.4) nuclei withl = 1. Indeed, the formalism is similar, as shown
2 by egs 2.7a, 2.8, and 2.18.
2 Now, we illustrate with quadrics “CSA/dipolar” correlation
3cosy—1 X+ YD) + (1 —3cog y)Z,°=—-1 (3.5) experiments. Several pulse sequences have been designed fc
2 the direct correlation of dipolar interaction and chemical shift
) ) _ in static 2D NMR experiment®23 Other sequences are also
These equations correspond to a hyperboloid of revolution of geyoted to the correlation of tensorial quantities, such as 2D
two sheets (eq 3.4) and to a h_yperboI0|d of re\_/olutlon of One exchange experimen$25 We consider a unique isolatéetS
sheet (eq 3.5). The hyperboloid of two sheets is characterizedspin pair and assume that the associated chemical shift tenso

by H (see Figure 6b), which is directly rglatedarp. AsDy > (for 1) is axially symmetric (withoxx andoyy = og > 0 and
0, the sign+ is added to the hyperboloid of two sheets. As ¢;; = g; > 0). We assume moreover that the two PASs are
stated above, it corresponds to the relation? = Dzz,. The coincident. In this case, the relevant quadrics in the unique

sign — is therefore added to the hyperboloid of one sheet and PAS are
corresponds to the relationr—2 = Dzgz,. One can then deduce

half of the corresponding Pake doublet (Figure 6¢). Comparing oo+ Y)+oZ=1 (3.6)
Figures 5b and 6c, it is thus shown that the overall anisotropy

is modulated under fast reorientation by the factor (% gos X4V o272=41 (3.7)
1)/2. This result is general for axially symmetric second-rank

tensorst Wheny — W = {mn, G — » andH — « (Figure 6b). Equation 3.6 corresponds to an ellipsoid of revolution. Equa-

r—2— 0 for every orientation oBy from Zy;, and the anisotropy  tions 3.7, which are related to the geometrical part of the dipolar
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Figure 8. Pictorial representation of magic-angle spinning (MAS). We

assume that; > 0 fori = X, Y, Z. In the static rotor (left side), the
crystallites are randomly oriented from thé:¥rZr) rotor frame. The

@ ellipsoids are drawn in the PAS of each crystallite (only Zrexes are
i Q ‘ N represented). The Euler anglesf,y) (see Figure 1) connect the PAS
] 0 @

and KrYrZR). In the rapidly rotating rotor (right side), the corresponding

averaged ellipsoids are represented. They are of revolution, and they
all admitZg as the unique axis of revolution. When= 45° andf =

& &m, a sphere is obtained.= (To) 2 (see eq 4.3)K = (T)) 2 (see eq

Figure 7. Pictorial representation of a 2D “CSA/dipolar” correlation ~ 4.4);L = (Tiso) Y2

experiment. Three sefq{r=2),,(r~3p} corresponding t@, = 0°, &m,

and 90 are represented. tensors and Wigner rotation operatérst is then shown that

Hamiltonians can be written as the sum of isotropic parts
interaction, correspond to the set of complementary hyperboloids(involving traces of the different tensors) and anisotropic parts
of revolution presented above. For one particular crystallite, containing¥/»(3co$ 6 — 1) as a prefactor. Whefi = &,
the intersectionr{, of the ellipsoid in theBy direction gives anisotropic effects on the line shapes vanish. We shall illustrate
the resonance on the second dimension (shielding dimension)the effects of MAS by considering Cartesian tensors (or 3
whereas the intersectiom)f of the hyperboloids gives the matrices) and simple frame transformations. Let us consider
dipolar splitting on the first dimension (dipolar dimension). In an interaction represented by a symmetrical second-rank tenso
Figure 7, three particular orientationsi@f are represented. For ~ with T; > 0 in the corresponding PAS. We consider a rotor-
Bo = 0°, (rd, = g is associated with the maximum dipolar fixed frame ¥rYrZr), which is oriented by the Euler angles

splitting as ¢)p is minimum. Indeed,rjp = 272 0r (r3)p = (o.,B,y) from the PAS (Figure 8). The expression &f fx.vxzs)
2. Using eq 2.13, 2.14, ane-(?)p = Tzz,, one obtainsp = is given by

+D. ForBo = Cm, (s = (200 + 0)/3 = 0 is associated

with a vanishing dipolar splitting (fo — « asfo— W = {m). [Tl vez) = P~ (0u,8,)[T]pas P(a,B,7) (4.1)

Finally, for 8o = 90°, (r ), = op is associated with a nonzero

dipolar splitting (h_alf of the maximum splittir_]g observed for The matrix P and matrix elementsTi, are given in the
o= 0°). The "scissors” pattern shown in Figure 7 has been appendix. Spinning the sample around the rotor axis implies
previously qbserved in the case of*& cross polarlz:;\;lon (CP)  that y becomes a function Ofurt, Where wro; = 27Vt
NMR experiment on powdered ferrocene fsHs),.>* It has corresponds to the pulsation of the rotor. We supposeithat
thus been shown that the dominant ridges of 2D stalic Spectra— «; that is, v, is much higher than the considered interaction
could be easily illustrated by using quadrics. The generalization i, nertz. In this case averaged valuesdarb?, ..., fi (see the

to noncoincident tensors is easily achieved by transposing the apnendix) are obtained by considering the following integrals:
hyperboloid equations into the CSA PAS. We now turn to the

pictorial representation of macroscopic reorientations of pow- 1 p2n n e n
dered samples, that is, MAS, MAH, VAS, and SAS. I, = Eﬁ, (cosy)” " (siny)" dy (4.2)
4. Magic-Angle Spinning lo=1>=1/2andl; = 0. In (XrYrZR), the averaged expression

] _ i ) for T under rapid rotation is given by
Andrew and Lowé&!realized that rapid macroscopic rotation

of samples at the “magic-anglef) & {n) led to the suppression T

of anisotropic first-order interactions? corresponds to the angle _ o
between the rotor axis ar®h. MAS is one of the most used [Mxyz)=|0 Ty O
solid-state NMR technigues, as it allows the obtainment of high- 0 0 ?” (v ZR)
resolution spectra. The mathematical treatment of MAS is RR
generally done by using spherical components of the involved with

0 O
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T, = %[(co§ o cog f3 + sin” o) Ty, + (sin’ o co B + Slatic “:"E'“__'i'”

cos a)Tyy+ Sirf AT, (4.3)

T, = cof a sir? B Tyy + sinf asin  Tyy+ co S T,
(4.4)

One notes that ™ + Ty = 3Tiso. [T](xavrze) is diagonal and
corresponds to an ellipsoid of revolution iXgYrZR), with Zg

as the axis of revolution. It should be noted that eand

T, expressions can be easily derived without any calculation.
Before the sample reorientation, the interseciouf the initial e, [l
quadric in theZg direction (i.e. the rotor axis direction) is given
by

Rizzco§asin2ﬁ Tyx + Sin’ asir? B T,y + cos B T, -
(4.5) apetiy |

Ll e
It follows that 1R* = T. The expressioffy is obtained by Figure 9. Pictorial representation of MAS in the case of the
trace invariance. This approach is strictly analogous to that usedheteronuclear dipolar interactiofivx = Tyy > 0, Tzz < 0). In the static
in section 3 for the representation of rapid local reorientation rotor (left side), the crystallites are randomly oriented from MevkZz)
of molecules (see also eqs 3.2 and 3.3). The semiaxes of thg'otor frame. The hyperboloids are drawn in the PAS of each crystallite

. . —v_1/2 TN—1/2 (= (only theZ axes are represented). The Euler angigs,{’) (see Figure
averaged quadrics are given By~ and (Ti) (Figure 8). 1) connect the PAS ancKgYrZg). In the rapidly rotating rotor (right

The equation inXrYrZg) is then side), the corresponding averaged hyperboloids are represented. On
o _ notes thatb = ¢mn. M = ((1 — 3 cog )/2) Y34 N = (1 — 3 cog B)~ 13
TXZ+ YA+ TZ2=1 (4.6) P=((Bco$p—1)/2)Y%Q=(3cosp — 1)

It is interesting to note that these quadrics are all different, as 3 cog B)[(1/2)(3 cog B — 1)]| =2 or ® = . It follows that

Ty andT; depend explicitly on the Euler angles,g) orienting when = L (=®), 152 = 0 for everyp value. The isotropic
the PAS of a given crystallite an&4YrZg). One notes further ~ value of the heteronuclear dipolar coupling is attained and the
that if @ = 45° and 8 = &m thenT_D — ?“ = (Txx + Tyy + anisotropy vanishes as well under rapid MAS. Wiikes W

T,2/3 = T The ellipsoid of revolution becomes a sphere of = &m: the semiaxes of the averaged quadrics diverge. They
radius [Tiso) Y2 (Figure 8). The intersectiom,s of every are therefore represented by a point, which corresponds to the
averaged ellipsoid in the, direction gives the resonance Z€ro value of the interaction (see sections 2 and 3). Pictorial

frequencyT,y of each crystallite under rotation. Using eq 4.6, representation of MAS was thus presented, avoiding spherical
components of the different tensors. Such an approach can be

applied to all the quadrics presented in Figure 4 and for every

—5= T =Tysi 0+ T, cos' 0 (4.7) set of T; components.

Fop

0 corresponds to the macroscopic angle between the rotor axis5. Magic-Angle Hopping
Zr andBy. Generally,Tys is a function of the initial Euler angles
(o,8) (see section 6). However, whén= Cn, eq 4.7 becomes
rag 2 = Tap = (2To + T)/3 = Tiso. rap and T,z are now
independent ofd,3), and one unique resonance frequency is
obtained for all crystallites: high-resolution is obtained. This
corresponds to a direct pictorial representation of MAS effects
on first-order interactions. Another example is given in Figure
9. The geometrical part of the heteronuclear dipolar interaction . . .
(I—Sspin pair) is considered. Sets of hyperboloids of revolution Sontinuous rotation. This led to averaged values®ot?, ...,
are considered (see section 3}.is the relevant angle. In fi (see Appendix) using integrals, (eq 4.2). If the same
(X:YrZr), averaged quadrics obtained under rapid rotation are 2Veraging procedure is possible by discrete requi@ops” of

Bax and co-workef$ demonstrated that continuous rotation
of the sample around an axis at the “magic-angle” is not
necessary to obtain isotropic values of interactions in a 2D
experiment. Equal evolutions of magnetization for three discrete
positions of the rotor (at the “magic-angle” frog) instead of
continuous rotation are sufficient. The pictorial representation
of MAS presented above implies averaging of quadrics by

given by the rotor, then one must fulfill the following equations:
1 1
5@ cod f— D)X+ YA + (1 — 3cod f)Z2 = +1 Sl fo”’(cosy)z‘—" (siny)"dy =
(48) 27
L 3602 36Q|n
Sets of hyperboloids fgf > W andj < W are shown in Figure —Zo[cos(y + q—o)] [sin(y + q—o)] (5.1)
9. All these hyperboloids are different, depending explicitly P¢= p p

on f (see the expressions M — Q in Figure 9). However,

the angle® betweenZg and each asymptote of the averaged for n =0, 1, 2 and every. Basic trigonometric calculations
quadrics is independent of the initial orientation of any given show thaip = 3 corresponds to the minimum number of “hops”
crystallite. One shows easily (using eq 4.8) ttigtb = |(1 — (Figure 10) and
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120°

120°\’ 120°

Figure 10. Pictorial representation of three regular hops of the rotor
during a magic-angle hopping (MAH) experiment. Incrementg afe
120°.

1

%[cos,2 y + cof(y + 120°) + cog(y + 240°)] = 5

lo

:—13[c05y siny + cosf + 12C°) sin(y + 120°) +
cosfy + 24C) sin(y + 240°)] =0=1,

Slsin®y + sirf(y + 120) + sirf(y + 240)] =3 =1,

(5.2)

N

This is a direct representation of a MAH experiment. Recently,
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Figure 11. Pictorial representation of variable-angle spinning (VAS)
for Txx = Tyy= 2, andTzz = 1 (au).f is defined as in section 4 and
in Figure 8.6 corresponds to the angle betwe@nand the rotor. For

B = &m, the averaged quadric corresponds to a sphere of raiy)s{Z

novel schemes involving ultraslow rotation of the samples were the intersection radius of this sphere in Bidirection is independent

proposed in the literature and referred to as MAT or magic-
angle turning?®® Equations 5.1 and 5.2 can be easily generalized
to every (cos)'(sin y)s trigonometric function (with fixed =

(r + 9). If one wants to “average” such a function, classic
trigonometric calculations show that- 1 regular hops of the
rotor are sufficient. In other words,

1 27 .
P [ (cosy)' (siny)*dy =

ol o) [ e e
el L vk wivy | I L G ey [ NG

for fixed t and everyy. In this case, the figure obtained after
the successive hops is no longer an equilateral triarigie,
see Figure 10) but a regular polygontef 1 vertices. Equation
5.3 will be of particular interest for the direct representation of
DAH or dynamic-angle hopping, involving higher-order
interactions (such as second-order quadrupolar interaction).

6. Variable-Angle Spinning

When@ # {n, rapid reorientation of the sample corresponds
to VAS. The effects of VAS are easily understood by using
the expression of s given in eq 4.7. The modulation of the
static line width is obtained by variations of and 5. An
example is shown in Figure 11 wiffxx = Tyy= 2, andTzz =
1 (Tiso = 5/3) in arbitrary units. The static line width is given
by an ellipsoid of revolution. Under VAS and using eq 4.7,

T, =%(3+ cog B) sir? 6 + (2 — cog ) cos 6
6.1)

Tog

Moreover, the static line width is given by eq 2.10 wijth
corresponding to the Euler angle betwdyand the unique
axis of the PAS in the static sample:

T, =2—cos f, (6.2)

of 6 and corresponds t®is.

For fixed 0, the line width under rapid rotation of the sample is
then given by [g)maxand {Tg)min. Most of the results of VAS
are illustrated in Figure 11.

For & = 0°, no modulation of the static line width is observed.
In this casef8 = o and egs 6.1 and 6.2 are strictly identical.

For 6 = ¢, a unique resonance 8t, = 5/3 is observed, as
expected from MAS results (section 4).

Derivation of eq 6.1 givesTh)max= (3 + cog 0)/2 and Tg)min
= (2 — co¥ 0) for 0 < &m and {p)max = (2 — cog 0) and
(Tg)min = (3 + cog 6)/2 for 6 > Lm. In other words, the static
linewidth is modulated by the factor (3 ¢o8 — 1)/2 under
rapid VAS at 6. This is a general result of the VAS
experiment?

As shown in Figure 11, all curves obtained for variable
intersect for = . In the static sample, the corresponding
crystallites are at the “magic-angle” from the rotor axis. Under
rapid reorientation of the rotor, the corresponding averaged
quadric is a sphere of radiugi{) Y2 = (5/3)12 (see section
4 and Figure 8). The intersection of this sphereHgyat 0 is
evidently independent &f and Tem = Tiso (S€€ €q 6.1 foff =
Cm). If Tiso = 0 (as for the dipolar interaction), the averaged
sphere is at best represented by a point.

7. Miscellaneous

Finally, we illustrate with quadrics the rotation of samples
around two different axes (fdr= 1/2) and wonder about the
pictorial representation of higher-rank interactions (for instance,
the second-order quadrupolar interaction Ifer n/2 with n =
3,5,7,9).

The rotation around two axe$ € 1/2) (known as SAS or
switching-angle spinning) was first introduced by Bax and co-
workerg8in the frame of CP NMR. Indeed, at very high speed
MAS, the dipolar interaction that is responsible for the CP
transfer of magnetization between the abundant spin bath (for
instance!H) and the much less abundant nuclei (for instance
13C) is strongly affected by the rotation of the rotor and even
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Figure 13. Graph of eq 7.2:t = (1 — 3 co 0,)/[3(1 — cog 6,)] vs
the angled,. The first angled; is fixed at O.

Figure 12. Pictorial representation of switching-angle spinning (SAS).

The rotor is rapidly rotated & = 0° (duringt) and6; (during (1—t)) and subsequent double Fourier transformation would lead to a
from B, (see text, section 7l andK are given in Figure 8. 2D “isotropic/anisotropic” correlation. It should be noted that

t = 1/6 impliesf, = 63.43 (see Figure 13) angl/t; = 5. Indeed,

(0°, 63.43) corresponds to one of the DAS angle pairs. Such
an experiment could be interesting for CP experiments involving
nuclei with strong CSA (such as very anisotropi€ nuclei or
“heavy elements” such d8Hg, 11°Sn, and'*3Cd) and for which

the highest rotation speeds are required. The CP transfer would
be achieved atO(with maximum efficiency) and the detection

of signals would occur a#,. The anisotropic patterns would
be then modulated by the factor (3 éo8, — 1)/2 in the
anisotropic dimension. As the CSAs are large, the choice of
6, in the vicinity of the “magic-angle” would lead to relatively
small broadening of the patterns, leading to an important S/N
gain. To our knowledge, such an experiment has not been
proposed in the literature. Nevertheless, it can be compared to
the CP-DAS experiment proposed by Baltisberger and co-
workers involving the (0, 63.43) angle pair and devoted to
second-order quadrupolar interactiéhs.

For higher-rank interactions (such as the second-order qua-
drupolar interaction), it is well-known that the energy levels of
the central transition of a quadrupolar nucleus witlr 3/2,

5/2, 712, 9/2 when perturbed to the second-order are complex
fourth-degree trigonometric functions, involving the Euler angles
(00,80,70) between the EFG tensor anB,.32 Moreover,
tTaﬁ(O°) +(1- '[)Ta/;(ez) =Te, (7.1) sophisticated methods such as DEROR M and MQ-MASS
were recently implemented in order to suppress the second-
order broadening (the total suppression is actually impossible
under simple MAS or even VAS). All these techniques were

vanishes. But, as stated above in section 6, NMR interactions
are not modulated by the macroscopic rotatio@l # 0° (even

at infinite rotation speed). The SAS methodology consists of
the building up of the'3C magnetization under CP éat= 0°

(at least theoretically) and the detection of signals under high-
resolution conditions (i.ef = {m). Zero-angle spinning
followed by MAS acquisition was also used for RF-driven spin
diffusion experimen®? Recently, the SAS technique was
applied to complex silicate systems in order to obtain CSA data
in poorly resolved lines (by using the 98- ¢, angles pair§°

In all cases, the acquisition of the spectra occurs at the “magic-
angle”, yielding high resolution in thé, dimension. We now
show that high-resolution spectra may be obtained without
rotation at the “magic-angle”. We consider a quadric With

> 0. Under rapid rotation, averaged quadrics are given by eqs
4.3, 4.4, and 4.6. They correspond to ellipsoids of revolution.
Rotation of the rotor afl, and6-, corresponds to the intersections
of the averaged quadrics By at 6; and 6, (Figure 12). We
imposef; = 0°. The evolution of the rotor duringat ¢ is
followed by an evolution during + t at 6, (with 0 <t < 1).

High resolution is attained if the following equation is fulfilled

for every set{T_D,ﬂ} (see eq 4.7):

Equation 7.1 is fulfilled for every thT_D,ﬂ} when

1—3cog0 described by using spherical tensors, Wigner rotation operations,
=— """ "2 and t>0 (7.2) and a careful analysis of the trigonometric expressions in terms
3(1— co¢ 0,) of P(cos0) andP4(cos#) (whereP, andP, correspond to the

second- and fourth-degree Legendre polynoméls;the angle
The graph oft versus6. is represented in Figure 13. The petween the rotor axis anB). Obviously, the generalized
conditiont > 0 implies 6, > Cm. Strictly speaking, this  quadrics presented above can not give a satisfactory representz
experiment could be compared to the 2D-DAS experidféfit  tion of second-order effects. Indeed, the quadrics led essentially
which is devoted to the suppression of second-order quadrupolaro second-degree trigonometric functions (see eqgs 2.21a, 2.21b)

broadening: after & evolution atd; = 0°, at; evolution atf However, we will show in a next article that static second-order
= 60, would follow (after subsequent hopping of the rotation effects can be well-represented by fourth-degree surfaces (for
axis between Dand6,). For every value ofjg). Moreover, simple Cartesian transformations

¢ of these novel surfaces under fast reorientation will allow us to

2_1-t_ 2 (7.3) lillustrate the effects of MAS, VAS, DAS, DAH, DOR, MQ-

19 t 1—3cog6, MAS, and SAS® on the central transition of quadrupolar nuclei.

Overtone spectroscoffy?>devoted to integer spins (such’dn,
an echo would occur. This echo would be modulatediiy | = 1) will also be analyzed under static conditions and under
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CHART 1

g
P h|=

ad
=|b e
c fi (—sing cosy)

fast reorientation of the sample. In all cases, no explicit
reference to Legendre polynomials will be made.

8. Conclusions

In this paper, we have shown that generalized quadrics can

give a satisfactory representation of first-order interactions for

every set of principal components. The use of higher-degree
surfaces such as ovaloids is not necessary. Moreover, trans-
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(cosa cosp cosy — sina siny) (—cosa cosp siny — sina cosy) (cosa sinf3)
(sinoL cosp cosy + cosa siny) (—sina cosp siny + cosa cosy) (sina sing)

(sing siny)

(cosp)
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