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In solid-state NMR, spectra of powdered samples are dominated by the anisotropy of the involved interactions.
All internal interactions can be described by second-rank tensors, which account for the observed broadening
of the lines. A well-known representation of these tensorial effects is the so-called “representation ellipsoid”.
It allows a direct pictorial representation of any first-order interaction. However, an ellipsoid can be defined
only for strictly positive principal components of a given tensor. More complicated surfaces, such as ovaloids,
were introduced recently for the direct representation of tensorial properties and for every set of principal
components. In this paper, we show that the “representation ellipsoid” can be extended to generalized quadrics
(including cylinders, hyperboloids, and degenerate surfaces), avoiding the use of ovaloids. Moreover, such
quadrics can be used for a very simple representation of macroscopic reorientation techniques of samples
such as magic-angle spinning, variable-angle spinning, and switching-angle spinning, as well as for the
description of rapid anisotropic molecular motions. No explicit reference to Legendre polynomials was made.
This article is the first step for a Cartesian representation of higher-order NMR interactions and higher-order
macroscopic trajectories such as dynamic-angle spinning, double-rotation, or multiple-quantum magic-angle
spinning.

1. Introduction

In the presence of a large external static fieldB0, solid-state
NMR spectra of powders are usually characterized by broad,
featureless lines even in the case of simple systems involving
one or few crystallographic sites. Indeed, all internal inter-
actions that are present at a given nucleus (such as chemical
shielding, homo- and/or heteronuclear dipolar coupling, qua-
drupolar interaction) can be described by second-rank tensors.1

It follows that the spin interactions depend on the orientation
of B0 relative to each principal axes system (see below) related
to the nucleus of interest; therefore, frequency dispersion is
observed. In the case of powdered samples (involving for
instance one unique crystallographic site), integration over the
crystallite’s orientation distribution2 leads to the well-known
“powder patterns”, characteristic for the various spin inter-
actions: chemical shift anisotropy (CSA),3 Pake doublet4 for
dipolar coupling or first-order quadrupolar interaction for spin
I ) 1, central transition and satellites patterns5 for I ) n/2 (n)
3, 5, 7, 9), central transition broadened by second-order
quadrupolar interaction,6 and so forth. Several interactions of
the same order of magnitude may be present, leading to complex
line shapes. The resolution is definitively lost when several
broad lines overlap. Several pictorial representations of tensors
have been given in the literature, accounting at least for first-
order effects of the different NMR interactions. The most
popular representation is the so-called “representation el-
lipsoid”.1,7 This approach is essentially Cartesian (involving 3
× 3 matrices) and has been applied to many symmetrical
second-rank physical properties.7 It can be shown that the
intersection of this ellipsoid in theB0 direction is directly related
to the magnitude of any first-order perturbation. As the

orientation of B0 from the ellipsoid axes varies from one
crystallite to another in a powder sample, a direct representation
of the interaction anisotropy is obtained. However, the “rep-
resentation ellipsoid” implies that the three semiaxes can be
defined. In other words, the three principal components of the
given tensor must be strictly positive. Recently, several authors
have developed a different pictorial representation based on
ovaloids.8,9 This representation holds for every set of principal
components, including zero and/or negative principal compo-
nents. In this article, we show that the use of ovaloids (which
correspond to sixth-degree surfaces) is not necessary. The
“representation ellipsoid” can be easily extended to generalized
quadrics (second-degree surfaces, including degenerate cases),
accounting for every set of principal components. Emphasis
will be made on traceless tensors, related for instance to dipolar
or quadrupolar interactions. Generalized quadrics will also be
used for the pictorial representation of fast molecular reorienta-
tions (and their effects on anisotropies) and two-dimensional
correlations between interactions.
To retrieve resolution in a solid-state NMR experiment, spatial

anisotropies must be removed. In the case of an isotropic liquid,
rapid and random molecular reorientation eliminates anisotropic
spectral broadening. Narrow lines are obtained, and only the
isotropic components of the spin interactions (related to the
traces of the involved tensors) are thus measured. In solid-
state NMR, high-resolution spectra can be obtained by either
averaging in spin space2 and/or averaging in real space. In this
work, we shall focus on averaging in real space. As shown
first by Andrew10 and Lowe,11 rapid reorientation of a powder
sample around the “magic-angle”θ ) úm ) 54.74° or magic-
angle spinning (MAS) can remove anisotropies related to first-
order interactions. MAS is a routine technique of solid-state
NMR. The mathematical treatment of this averaging procedureX Abstract published inAdVance ACS Abstracts,December 15, 1997.
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is based on the general transformation properties of second-
rank tensors under rotation, including the irreducible spherical
representation of tensors, Wigner rotation matrices, and the
second-order Legendre polynomialP2(cos θ) (θ corresponds
to the angle between the rotor axis andB0).1,2 This approach
was extended recently to the effect of macroscopic reorientation
on line shapes broadened by second-order interactions (such as
second-order quadrupolar interaction). In this case, it is now
well-known that rapid MAS cannot completely eliminate
anisotropic broadening effects.12 The ingenious derivation of
Hamiltonians in terms of second- and fourth-order Legendre
polynomialsP2(cosθ) andP4(cosθ) led to the conception of
new experimental schemes such as dynamic-angle spinning
(DAS), double-rotation (DOR),13-15 and multiple-quantum
magic-angle spinning (MQ-MAS),16 allowing the total suppres-
sion of second-order effects. More generally, MAS, DAS, and
DOR trajectories have been analyzed in terms of symmetry
imposed to the sample under reorientation.17 In this paper, we
give a pictorial representation of MAS (for first-order interac-
tions), taking advantage of the generalized quadrics cited above.
Spherical tensors, which are extensively used as far as solid-
state NMR is concerned, are not used in this work. Explicit
reference toP2(cosθ) will not be made. A pictorial representa-
tion of magic-angle hopping (MAH)18 and variable-angle
spinning (VAS)19 will be presented as well. It will also be
shown that the generalized quadrics are not suitable for the
representation of second-order effects on the line shapes. This
article is the first step for the direct Cartesian representation of
second-order effects by fourth-degree surfaces. It will be shown
that the effects of MAS, VAS, and higher-order trajectories on
quadrupolar nuclei can be easily understood by considering these
novel surfaces and simple Cartesian frame transformations. Once
again, explicit reference toP2(cosθ) andP4(cosθ) will not be
necessary.
In this paper, the following plan is adopted: section 2 is

devoted to the direct pictorial representation of first-order NMR
interactions by quadrics. This section gives general rules for
the representation. Applications of this representation to the
effect of molecular reorientation and to 2D correlations in static
NMR experiments are presented in section 3. The description
of the effects of MAS, MAH, and VAS are given in sections 4,
5, and 6, respectively. Finally, the reorientation of samples
around two axes (forI ) 1/2) and higher-order interactions
are described in section 7.

2. Representation of First-Order Interactions

In the presence of a strong external magnetic fieldB0, the
relevant HamiltonianĤ related to the nucleus of interest can
be written asĤ ) Ĥext + Ĥint, where1,20

The external interactions correspond to the Zeeman (ĤZ) and
radiofrequency (ĤRF) Hamiltonians. The different terms inĤint

correspond to the shielding interaction (Ĥσ), homo- and het-
eronuclear dipolar coupling (ĤD), quadrupolar interaction (ĤQ

if I > 1/2), indirect coupling (ĤJ), and spin-rotation interaction
(ĤSR). In this paper, we focus onĤσ, ĤD, and ĤQ, as they
represent the most important NMR interactions. However, the
results derived for these three interactions may be extended to
the others. All internal interactionsp-1ĤT (in angular velocity
units) may be represented by second-rank tensors [T] such that

p-1ĤT ) kTÎ[T]YT, following the notations given by Harris.20

The spinÎ corresponds to the nucleus of interest;YT is another
vector quantity. For [T] ) [σ], Ys ) B0. For [T] ) [D], YD )
S (a spin different fromI, accounting for homo- and hetero-
nuclear dipolar coupling). For [T] ) [q], YQ ) I. The
parameterkT adjusts the magnitude and dimension of the [T]
tensor. We suppose that [T] is a symmetrical tensor, and we
neglect therefore antisymmetric contributions.2 For each tensor
[T], one can choose a particular axes system (XYZ) or principal
axes system (PAS) in which [T] is diagonal. TXX, TYY, andTZZ
are the principal components. When considering [T]PAS and
the principal components, other quantities can be defined:

Other conventions may be found in the literature. The
different PAS are not necessarily coincident. In the respective
PASs

rI-S corresponds to the internuclear distance. The tensor [D]
is axially symmetric (ηD ) 0) and traceless.Q corresponds to
the quadrupole moment of the nucleus. Fori ) X, Y, andZ,
eqii ) Vii andVii are the Cartesian components of the electric
field gradient (EFG). This tensor is not necessarily axially
symmetric (ηQ may be different from zero) but is traceless (in
agreement with the Laplace equation, that is∑X,Y,Zqii ) 0).
To estimate the effects of anisotropy on the line shapes, the

diagonal tensor [T]PAS must be expressed in the laboratory
(LAB) frame (X0Y0Z0) where theB0 direction andZ0 are
coincident. The LAB frame is derived from the PAS frame by
the Euler angles (R0,â0,γ0) which are given in Figure 1. The
expression of [T] in the LAB frame is then given by

Ĥext ) ĤZ + ĤRF

Ĥint ) Ĥσ + ĤD + ĤQ + ĤJ + ĤSR (2.1)

the isotropic component: Tiso ) (TXX + TYY+ TZZ)/3
(2.2)

the anisotropy: two alternative definitions are generally
proposed in the literature

∆T) TZZ - (TXX + TYY)/2 (2.3a)

(δA)T ) TZZ - Tiso (2.3b)

the asymmetry: ηT )
TXX - TYY
TZZ - Tiso

(0e ηT e 1) (2.4)

using the convention:
|TZZ - Tiso| g |TYY- Tiso| g |TXX - Tiso| (2.5)

kσ[σ] ) γI[σXX 0 0
0 σYY 0
0 0 σZZ

] (2.6)

kD[D] ) 2πD[1 0 0
0 1 0
0 0 -2] (2.7a)

D )
µ0

4π
p
2π

γIγS

r I-S
3

(2.7b)

kQ[q] ) e2Q
2I(2I - 1)p[qXX 0 0

0 qYY 0
0 0 qZZ

] (2.8)
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P is given in the Appendix. Moreover,P-1 ) tP. When dealing
with secular parts of the different Hamiltonians and restricting
ourselves to first-order perturbation effects, only the termTZ0Z0
in [T](X0Y0Z0) is relevant. Using eq 2.9,

In a powder sample,TZ0Z0 represents the magnitude of the tensor
[T] for a particular crystallite. For this crystallite, the orientation
of B0 in the PAS is given as in Figure 1. Using eqs 2.2-2.5
and 2.6-2.8, we deduce the NMR line positions of the spectrum
for a given orientation of crystallite when considering the
different interactions:

σZ0Z0 is given by eq 2.10 or

dipolar coupling: for an isolated heteronuclearI-Sspin system,
two I lines are observed at

D is given in eq 2.7b. In the case of homonuclear dipolar two-
spin interaction

Again,D is given in eq 2.7b withγI ) γS ) γ. DZ0Z0 is given
by eq 2.14.

Again, qZ0Z0 is given by eq 2.10 or

e2qZZQ/h is the quadrupole coupling constant. ForI ) n/2 (n
) 3, 5, 7, 9), the central transition (mI ) 1/2) is not shifted by
the first-order quadrupolar interaction.mI * 1/2 corresponds
to the (2I - 1) satellites. ForηQ ) 0,

It is interesting to note that this tensor can be compared to [D],
described by eq 2.7a.
As stated above, the role ofTZ0Z0 is crucial. We shall now

give a pictorial representation of this quantity. First, we restrict
ourselves to strictly positive principal components; that isTii
> 0 (i ) X, Y, Z). In the PAS, we consider the quadric given
by

This quadric is an ellipsoid (Figure 2a), whose semiaxes are
(Tii)-1/2. WhenB0 is oriented from the PAS by the Euler angles
(Ro,âo,γo) (Figure 1),B0 is located in the plane containing the
X′(Ro) and Z axes. The intersection between this plane and
the ellipsoid is an ellipse, whose equation inX′(R0)Z is

The radiusr corresponding to the intersection of the ellipse with
theB0 direction (Figure 2a) is then easily derived, usingX′ )
r sin â0, Z ) r cosâ0, and eq 2.20. One obtains

Using eq 2.10, it follows that

Figure 1. Definitions of the Euler angles (R0,â0,γ0) transforming a
given PAS frame (XYZ) into the LAB frame (X0Y0Z0): (a) PAS frame
is rotated counterclockwise around theZ axis by R0. This rotation
generates a new frame (X′Y′Z); (b) counterclockwise rotation of the
(X′Y′Z) frame aroundY′ by â0 generates a second intermediate frame
(X′′Y′Z0); (c) this second intermediate frame is rotated counterclockwise
by γ0 aroundZ0, resulting in the (X0Y0Z0) LAB frame. Using these
definitions,R0 andâ0 represent the polar angles of theB0 direction in
the PAS.

[q] ) - 1
2
qZZ[1 0 0

0 1 0
0 0 -2] (2.18)

TXXX
2 + TYYY

2 + TZZZ
2 ) 1 (2.19)

(cos2 R0 TXX + sin2 R0 TYY)X′2 + TZZZ
2 ) 1 (2.20)

r ) (cos2 R0 sin
2 â0 TXX + sin2 R0 sin

2 â0 TYY+

cos2 â0 TZZ)
-1/2 (2.21a)

[T](X0Y0Z0) )

P-1(R0,â0,γ0)[TXX 0 0
0 TYY 0
0 0 TZZ

]
(PAS)

P(R0,â0,γ0) (2.9)

TZ0Z0 ) cos2 R0 sin
2 â0 TXX + sin2 R0 sin

2 â0 TYY+

cos2 â0 TZZ (2.10)

shielding interaction: νσ ) γ
2π
B0(1- σZ0Z0

) (2.11)

σZ0Z0
) σiso + ∆σ

3
(3 cos2 â0 - 1+ ησ sin

2 â0 cos 2R0)
(2.12a)

σZ0Z0
) σiso + (δA)σ[ 12(3 cos2 â0 - 1)+ 1

2
ησ sin

2 â0 cos 2R0]
(2.12b)

νD ) (1
2
DDZ0Z0

(2.13)

DZ0Z0
) 1- 3 cos2 â0 (2.14)

νD ) (3
4
DDZ0Z0

(2.15)

quadrupolar interaction: the expression for a transition
frommI tomI -1 is given by

νQ )
3(1- 2mI)

4I(2I - 1)
e2Q
h
qZ0Z0 (2.16)

qZ0Z0 ) 1
2
qZZ(3 cos

2 â0 - 1+ ηQ sin
2 â0 cos 2R0) (2.17)
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Equation 2.21b gives a simple geometrical representation of
TZ0Z0. It corresponds to the well-known “representation el-
lipsoid” related to symmetrical second-rank tensors, which is
extensively used in crystal physics7 or in solid-state NMR.1 It
can be noted that forR0 ) 45° andâ0 ) úm, r-2 ) (TXX + TYY
+TZZ)/3 ) Tiso. When [T] ) [σ], σiso corresponds to the
isotropic shielding at the nucleus, which may be observed in
liquid-state NMR (neglecting solvent effects). Limitations of
this representation are easily understood by considering the
expressions of the semiaxes, that is (Tii)-1/2. It imposes thatTii
> 0. ForTii ) 0 and/orTii < 0, no real ellipsoid can be defined.
Other surfaces can be used, such as ovaloids.8,9 Ovaloids
correspond to sixth-degree surfaces. In fact, the use of ovaloids
is not necessary and generalized quadrics (second-degree
surfaces) are suitable for the pictorial representation ofTZ0Z0.
The expressions of these quadrics in the PAS are directly derived
from eq 2.19. Three examples involving zero and negative
principal components will now be given.
WhenTXX > 0, TYY > 0, andTZZ ) 0, eq 2.19 becomes (in

the PAS)

This equation corresponds to an elliptical cylinder (Figure 2b).
The intersection of this cylinder by theX′(R0)Z plane corre-
sponds to two parallel straight lines. Elementary geometry
allows us to relater, â0, andC (see Figure 2b) as sinâ0 ) C/r.
It follows thatr ) (cos2 R0 sin2 â0 TXX+ sin2 R0 sin2 â0 TYY)-1/2.
Again, r-2 ) TZ0Z0, demonstrating the direct relation between
these two quantities. One notes thatâ0 f 0 leads tor f ∞, as
can be seen from Figure 2b, andTZ0Z0 f 0. In other words,
when B0 is parallel to theZ axis of the PAS, theTZZ ()0)
principal component is attained. WhenR0 ) 45° andâ0 ) úm,
r-2 ) (TXX + TYY)/3 ) Tiso. In this particular case,Tiso > 0.

WhenTXX ) TYY) 0 andTZZ > 0, eq 2.19 becomes (in the
PAS)

The associated quadric is degenerate and corresponds to two
parallel planes (Figure 2c). The intersection of these parallel
planes by theX′(R0)Z plane corresponds to two parallel straight
lines. Again, elementary geometry allows us to relater, â0,
and d (see Figure 2c), as cosâ0 ) d/r. It follows that r )
(cos2 â0 TZZ)-1/2 or r-2 ) TZ0Z0. This expression is independent
of R0, as the tensor is axially symmetric. Whenâ0 f 90°, r f
∞ andTZ0Z0 f 0. The zero principal components are attained.
WhenTXX > 0, TYY > 0, andTZZ < 0, eq 2.19 becomes

This situation is encountered in the case of the dipolar or
quadrupolar interactions (see eqs 2.7a, 2.8, and 2.18). The
following description is therefore particularly suitable for these
interactions. Equation 2.24 corresponds to an elliptical hyper-
boloid of one sheet. One should note that this surface is not
necessarily of revolution, asηT may be different from zero (the
caseηT ) 0 will be emphasized in section 3 and in Figure 5,
when dealing with the heteronuclear dipolar interaction). The
intersection of this hyperboloid by theX′(R0)Z plane corre-
sponds to a hyperbola, whose equation inX′(R0)Z is

This hyperbola exhibits two asymptotes, oriented fromZ by
Ψ(R0) (see Figure 3a). The expression oftg2Ψ(R0) can be easily
derived, usingX′ ) r sinâ0, Z ) r cosâ0, eq 2.25, andr f ∞.
It follows that

Assuming thatâ0 > Ψ(R0) and using eq 2.25, the intersection

Figure 2. Pictorial representation of anisotropic first-order interactions
for various{Tii} sets. Intersections with the plane containingB0 and
theX′(R0) andZ axes are also given. The (R0,â0) angles are the polar
angles ofB0 and are referred to Figure 1. (a)TXX > 0,TYY> 0, andTZZ
> 0 (ellipsoid).A ) (cos2 R0 TXX + sin2 R0 TYY)-1/2; B ) (TZZ)-1/2. (b)
TXX > 0, TYY > 0, andTZZ ) 0 (elliptical cylinder).C ) (cos2 R0 TXX
+ sin2 R0 TYY)-1/2 (c) TXX ) TYY ) 0, andTZZ > 0 (parallel planes).d
) (TZZ)-1/2.

1/r2 ) TZ0Z0 (2.21b)

TXXX
2 + TYYY

2 ) 1 (2.22)

Figure 3. Pictorial representation of anisotropic first-order interactions
for TXX > 0,TYY> 0, andTZZ < 0. Intersections by the plane containing
B0, and theX′(R0) andZ axes are also given. (a) Elliptical hyperboloid
of one sheet. Whenâ0 > Ψ(R0), the equation+r-2 ) TZ0Z0 holds. The
sign of the first member of the equation is emphasized.E ) (cos2 R0

TXX + sin2 R0 TYY)-1/2; tg2Ψ(R0) ) |TZZ|/(cos2 R0 TXX + sin2 R0 TYY).
(b) Elliptical hyperboloid of two sheets. Whenâ0 < Ψ(R0), the equation
-r-2 ) TZ0Z0 holds. The sign of the first member of the equation is
emphasized.F ) |TZZ|-1/2.

TZZZ
2 ) 1 (2.23)

TXXX
2 + TYYY

2- |TZZ|Z2 ) 1 (2.24)

(cos2 R0 TXX + sin2 R0 TYY)X′2- |TZZ|Z2 ) 1 (2.25)

tg2Ψ(R0) )
|TZZ|

cos2 R0 TXX + sin2 R0 TYY
(2.26)
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radiusr is then given byr-2 ) cos2 R0 sin2 â0 TXX + sin2 R0

sin2 â0 TYY- cos2 â0 |TZZ|. Comparing this expression and eq
2.10, it follows that+r-2 ) TZ0Z0. The sign+ is emphasized
in this expression as well as in Figure 3a. Whenâ0 f Ψ(R0),
TZ0Z0 f 0. The zero value of the tensor componentTZ0Z0 is
attained, but in this case it does not correspond to a principal
component. Whenâ0 < Ψ(R0), the B0 direction does not
intersect the hyperbola presented in Figure 3a. However, one
can use the complementary quadric, whose equation in the PAS
is

Equation 2.27 corresponds to an elliptical hyperboloid of two
sheets (which is not necessarily of revolution) (Figure 3b). The
intersection of this hyperboloid by theX′(R0)Z plane corre-
sponds to a hyperbola, of which the equation inX′(R0)Z is

Assuming thatâ0 < Ψ(R0), and using eq 2.28, the intersection
radiusr is then given byr-2 ) -cos2 R0 sin2 â0 TXX - sin2 R0

sin2 â0 TYY+ cos2 â0 |TZZ|. It follows that-r-2 ) TZ0Z0. Again,
the sign- is emphasized in this expression as well as in Figure
3b. The relation betweenr-2 and TZ0Z0 is now different but
remains easy to visualize. Whenâ0 ) 0, -r-2 ) -|TZZ| )
TZZ, and the negative principal component is attained.
It has thus been shown that second-rank properties including

negative principal components could be represented by a set of
two complementary hyperboloids, avoiding the use of ovaloids.
Every set ofTii values (including positive and/or negative and/
or zero principal components) can be represented by a quadric
(see Figure 4). When two principal components are equal, the

quadrics become surfaces of revolution (the axis of revolution
corresponds to theTZZ principal component). WhenTii ) Tiso
(for i ) X, Y, Z), the quadric is a sphere of radius (Tiso)-1/2.
WhenTiso ) 0, the radius of the sphere becomes infinite, and
this highly degenerate quadric can be represented by a unique
point. It will be seen below that these generalized quadrics are
suitable not only for the direct representation of anisotropy in
solid-state NMR but also for the pictorial representation of MAS,
VAS, and so on. Before considering the effects of macroscopic
sample reorientations, we illustrate two static experiments by
using quadrics, that is, static NMR in the presence of rapid
molecular reorientation and 2D correlation experiment involving
CSA and dipolar coupling. The use of quadrics exhibiting
negative principal components will be emphasized.
3. Solid-State NMR in the Presence of Molecular Re-

orientation and 2D Correlations. First, we illustrate the effect
of rapid molecular reorientation on NMR interactions. The
heteronuclear dipolar interaction of an isolatedI-Sspin pair is
considered. Following eq 2.7a, the geometrical part of the
dipolar interaction is well described by the tensor

As stated above, this tensor can be represented by a set of two
complementary hyperboloids of revolution (asηD ) 0), whose
equations in the dipolar PAS are

The I-Sbond direction corresponds to theZ axis of the PAS
and to the axis of revolution of the hyperboloids (Figure 5a).
Using eq 2.26,tg2Ψ ) 2 or Ψ ) úm. One notes thatΨ is
independent ofR0, as the tensor is axially symmetric. Symbols
- and+ in Figure 5 are referred to-r-2 ) DZ0Z0 and to+r-2

) DZ0Z0 whenâ0 varies from 0° to 90°. It is then possible to
represent half of the derived Pake doublet corresponding toνD
) +(D/2) (1 - 3 cos2 â0) (see eqs 2.13, 2.14 and Figure 5b).
The second branch of theI-S Pake doublet is obtained by
symmetry. Forâ0 ) úm, r f ∞ and the zero value of the tensor
is attained: the dipolar splitting vanishes when theI-S spin
pair is at the “magic-angle” from theB0 field.
It was observed for a long time that rapid anisotropic

molecular reorientation led to partial averaging of the different
interactions.1,21 We illustrate such averaging by considering
averaged hyperboloids, representing the effect of motion. We
suppose that theI-Spair reorients rapidly around a molecular
axisZM, which makes the angleø with I-S (Figure 6a, withø
> Ψ ) úm). The rotation of the associated set of hyperboloids
(Figure 5a) around the molecular axis leads to averaged surfaces.
These new quadrics are surfaces of revolution, with the
molecular axisZM as the new axis of revolution. The averaged
principal componentD| associated with this axis is given by
the intersection of the old quadrics (Figure 5a) by the molecular
axis directionZM:

D| > 0 as ø > Ψ ) úm. The second averaged principal
componentD⊥ is given by trace invariance, that is 2D⊥ + D| )
0. It follows that

Figure 4. Generalized quadrics representing first-order interactions
for every set{Tii} of positive, negative, and zero principal components
(i ) X, Y, Z).

TXXX
2 + TYYY

2 - |TZZ|Z2 ) -1 (2.27)

-(cos2 R0 TXX + sin2 R0 TYY)X′2 + |TZZ|Z2 ) 1 (2.28)

[1 0 0
0 1 0
0 0 -2]

X2 + Y2 - 2Z2 ) (1 (3.1)

D| ) 1

(r2)ø
) 1- 3 cos2 ø (3.2)
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D⊥ < 0. In the new frame (withZM as the unique axis), the
equations of the new averaged quadrics representing the rapid
reorientation of theI-S spin pair are given by

These equations correspond to a hyperboloid of revolution of
two sheets (eq 3.4) and to a hyperboloid of revolution of one
sheet (eq 3.5). The hyperboloid of two sheets is characterized
by H (see Figure 6b), which is directly related toD|. AsD| >
0, the sign+ is added to the hyperboloid of two sheets. As
stated above, it corresponds to the relation+r-2 ) DZ0Z0. The
sign- is therefore added to the hyperboloid of one sheet and
corresponds to the relation-r-2 ) DZ0Z0. One can then deduce
half of the corresponding Pake doublet (Figure 6c). Comparing
Figures 5b and 6c, it is thus shown that the overall anisotropy
is modulated under fast reorientation by the factor (3 cos2 ø -
1)/2. This result is general for axially symmetric second-rank
tensors.1 Whenø f Ψ ) úm, G f ∞ andH f ∞ (Figure 6b).
r-2 f 0 for every orientation ofB0 from ZM, and the anisotropy

due to the dipolar coupling vanishes. The caseø < Ψ can be
treated as stated above. Whenø ) 0, the “static” quadrics
(Figure 5a) are not affected by the reorientation (as they are of
revolution) and no modulation of the anisotropy is observed.
The same approach can be applied to all quadrics presented in
Figure 4. It should also be noted that the representation using
sets of averaged hyperboloids can be applied to quadrupolar
nuclei with I ) 1. Indeed, the formalism is similar, as shown
by eqs 2.7a, 2.8, and 2.18.
Now, we illustrate with quadrics “CSA/dipolar” correlation

experiments. Several pulse sequences have been designed for
the direct correlation of dipolar interaction and chemical shift
in static 2D NMR experiments.22,23 Other sequences are also
devoted to the correlation of tensorial quantities, such as 2D
exchange experiments.24,25 We consider a unique isolatedI-S
spin pair and assume that the associated chemical shift tensor
(for I) is axially symmetric (withσXX andσYY ) σ⊥ > 0 and
σZZ ) σ| > 0). We assume moreover that the two PASs are
coincident. In this case, the relevant quadrics in the unique
PAS are

Equation 3.6 corresponds to an ellipsoid of revolution. Equa-
tions 3.7, which are related to the geometrical part of the dipolar

Figure 5. Pictorial representation of the heteronuclear dipolar interac-
tion (isolatedI-Sspin pair). (a) Set of two hyperboloids of revolution
representing the geometric part of the interaction.+ and- correspond
to the conventions+r-2 ) DZ0Z0 and-r-2 ) DZ0Z0. In this case,Ψ )
úm. (b) Derived powder pattern (one half). For the three orientations
of B0, â0 ) 0°, Ψ ) úm and 90°, one obtains (-r-2)0° ) -2; (+r-2)Ψ
) 0; (+r-2)90° ) 1 and (νD)Ψ,90° ) +(D/2)(+r-2)Ψ,90°; (νD)0° )
+(D/2)(-r-2)0°; with D ) (µ0/4π)(p/2π)(γIγS/r I-S

3 ) (see eq 2.7b).

D⊥ ) 3 cos2 ø - 1
2

(3.3)

3 cos2 ø - 1
2

(XM
2 + YM

2) + (1- 3 cos2 ø)ZM
2 ) 1 (3.4)

3 cos2 ø - 1
2

(XM
2 + YM

2) + (1- 3 cos2 ø)ZM
2 ) -1 (3.5)

Figure 6. Representation of anisotropic motional averaging of the
heteronuclear dipolar interaction (isolated spin pair). (a) Fast reorienta-
tion of the I-Spair around the molecular axisZM (ø > Ψ ) úm). (b)
Averaged hyperboloids of revolution.G ) ((1- 3 cos2 ø)/2)-1/2; H )
(1- 3 cos2 ø)-1/2. (c) Derived powder pattern (one half). For the three
orientations ofB0, â′0 ) 0°, Ψ ) úm and 90°, one obtains (+r-2)0° )
1 - 3 cos2 ø; (+r-2)Ψ ) 0; (-r-2)90° ) -(1 - 3 cos2 ø)/2 and (νD)0°,Ψ
) +(D/2)(+r-2)0°,Ψ; (νD)90° ) +(D/2)(-r-2)90°; D as in Figure 5;f(ø)
) 1 - 3 cos2 ø.

σ⊥(X
2 + Y2) + σ|Z

2 ) 1 (3.6)

X2 + Y2 - 2Z2 ) (1 (3.7)
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interaction, correspond to the set of complementary hyperboloids
of revolution presented above. For one particular crystallite,
the intersection (r)σ of the ellipsoid in theB0 direction gives
the resonance on the second dimension (shielding dimension),
whereas the intersection (r)D of the hyperboloids gives the
dipolar splitting on the first dimension (dipolar dimension). In
Figure 7, three particular orientations ofB0 are represented. For
â0 ) 0°, (r-2)σ ) σ| is associated with the maximum dipolar
splitting as (r)D is minimum. Indeed, (r)D ) 2-1/2 or (r-2)D )
2. Using eq 2.13, 2.14, and (-r-2)D ) TZ0Z0, one obtainsνD )
(D. For â0 ) úm, (r-2)σ ) (2σ⊥ + σ|)/3 ) σiso is associated
with a vanishing dipolar splitting ((r)D f ∞ asâ0 f Ψ ) úm).
Finally, for â0 ) 90°, (r-2)σ ) σ⊥ is associated with a nonzero
dipolar splitting (half of the maximum splitting observed for
â0 ) 0°). The “scissors” pattern shown in Figure 7 has been
previously observed in the case of a13C cross polarization (CP)
NMR experiment on powdered ferrocene Fe(η-C5H5)2.23 It has
thus been shown that the dominant ridges of 2D static spectra
could be easily illustrated by using quadrics. The generalization
to noncoincident tensors is easily achieved by transposing the
hyperboloid equations into the CSA PAS. We now turn to the
pictorial representation of macroscopic reorientations of pow-
dered samples, that is, MAS, MAH, VAS, and SAS.

4. Magic-Angle Spinning

Andrew and Lowe10,11realized that rapid macroscopic rotation
of samples at the “magic-angle” (θ ) úm) led to the suppression
of anisotropic first-order interactions.θ corresponds to the angle
between the rotor axis andB0. MAS is one of the most used
solid-state NMR techniques, as it allows the obtainment of high-
resolution spectra. The mathematical treatment of MAS is
generally done by using spherical components of the involved

tensors and Wigner rotation operators.1 It is then shown that
Hamiltonians can be written as the sum of isotropic parts
(involving traces of the different tensors) and anisotropic parts
containing1/2(3cos2 θ - 1) as a prefactor. Whenθ ) úm,
anisotropic effects on the line shapes vanish. We shall illustrate
the effects of MAS by considering Cartesian tensors (or 3× 3
matrices) and simple frame transformations. Let us consider
an interaction represented by a symmetrical second-rank tensor
with Tii > 0 in the corresponding PAS. We consider a rotor-
fixed frame (XRYRZR), which is oriented by the Euler angles
(R,â,γ) from the PAS (Figure 8). The expression of [T](XRYRZR)
is given by

The matrix P and matrix elementsTiRjR are given in the
Appendix. Spinning the sample around the rotor axis implies
that γ becomes a function ofωrott, where ωrot ) 2πνrot
corresponds to the pulsation of the rotor. We suppose thatνrot
) ∞; that is,νrot is much higher than the considered interaction
in hertz. In this case, averaged values fora2, b2, ..., fi (see the
Appendix) are obtained by considering the following integrals:

I0 ) I2 ) 1/2 andI1 ) 0. In (XRYRZR), the averaged expression
for T under rapid rotation is given by

with

Figure 7. Pictorial representation of a 2D “CSA/dipolar” correlation
experiment. Three sets{(r-2)σ,(r-2)D} corresponding toâ0 ) 0°, úm,
and 90° are represented.

Figure 8. Pictorial representation of magic-angle spinning (MAS). We
assume thatTii > 0 for i ) X, Y, Z. In the static rotor (left side), the
crystallites are randomly oriented from the (XRYRZR) rotor frame. The
ellipsoids are drawn in the PAS of each crystallite (only theZ axes are
represented). The Euler angles (R,â,γ) (see Figure 1) connect the PAS
and (XRYRZR). In the rapidly rotating rotor (right side), the corresponding
averaged ellipsoids are represented. They are of revolution, and they
all admitZR as the unique axis of revolution. WhenR ) 45° andâ )
úm, a sphere is obtained.J ) (T⊥)-1/2 (see eq 4.3);K ) (T|)-1/2 (see eq
4.4); L ) (Tiso)-1/2.

[T](XRYRZR) ) P-1(R,â,γ)[T]PASP(R,â,γ) (4.1)

In ) 1
2π∫02π

(cosγ)2-n (sinγ)n dγ (4.2)

[Th ](XRYRZR) )[T⊥ 0 0

0 T⊥ 0

0 0 T|
](XRYRZR)
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One notes that 2T⊥ + T| ) 3Tiso. [T](XRYRZR) is diagonal and
corresponds to an ellipsoid of revolution in (XRYRZR), with ZR
as the axis of revolution. It should be noted that theT⊥ and
T| expressions can be easily derived without any calculation.
Before the sample reorientation, the intersectionRof the initial
quadric in theZR direction (i.e. the rotor axis direction) is given
by

It follows that 1/R2 ) T|. The expressionT⊥ is obtained by
trace invariance. This approach is strictly analogous to that used
in section 3 for the representation of rapid local reorientation
of molecules (see also eqs 3.2 and 3.3). The semiaxes of the
averaged quadrics are given by (T⊥)-1/2 and (T|)-1/2 (Figure 8).
The equation in (XRYRZR) is then

It is interesting to note that these quadrics are all different, as
T⊥ andT| depend explicitly on the Euler angles (R,â) orienting
the PAS of a given crystallite and (XRYRZR). One notes further
that if R ) 45° andâ ) úm, thenT⊥ ) T| ) (TXX + TYY +
TZZ)/3 ) Tiso. The ellipsoid of revolution becomes a sphere of
radius (Tiso)-1/2 (Figure 8). The intersectionrRâ of every
averaged ellipsoid in theB0 direction gives the resonance
frequencyTRâ of each crystallite under rotation. Using eq 4.6,

θ corresponds to the macroscopic angle between the rotor axis
ZR andB0. Generally,TRâ is a function of the initial Euler angles
(R,â) (see section 6). However, whenθ ) úm, eq 4.7 becomes
rRâ

-2 ) TRâ ) (2T⊥ + T|)/3 ) Tiso. rRâ and TRâ are now
independent of (R,â), and one unique resonance frequency is
obtained for all crystallites: high-resolution is obtained. This
corresponds to a direct pictorial representation of MAS effects
on first-order interactions. Another example is given in Figure
9. The geometrical part of the heteronuclear dipolar interaction
(I-Sspin pair) is considered. Sets of hyperboloids of revolution
are considered (see section 3).â is the relevant angle. In
(XRYRZR), averaged quadrics obtained under rapid rotation are
given by

Sets of hyperboloids forâ > Ψ andâ < Ψ are shown in Figure
9. All these hyperboloids are different, depending explicitly
on â (see the expressions ofM f Q in Figure 9). However,
the angleΦ betweenZR and each asymptote of the averaged
quadrics is independent of the initial orientation of any given
crystallite. One shows easily (using eq 4.8) thattg2Φ ) |(1 -

3 cos2 â)/[(1/2)(3 cos2 â - 1)]| ) 2 orΦ ) úm. It follows that
whenθ ) úm ()Φ), râ

-2 ) 0 for everyâ value. The isotropic
value of the heteronuclear dipolar coupling is attained and the
anisotropy vanishes as well under rapid MAS. Whenâ ) Ψ
) úm, the semiaxes of the averaged quadrics diverge. They
are therefore represented by a point, which corresponds to the
zero value of the interaction (see sections 2 and 3). Pictorial
representation of MAS was thus presented, avoiding spherical
components of the different tensors. Such an approach can be
applied to all the quadrics presented in Figure 4 and for every
set ofTii components.

5. Magic-Angle Hopping

Bax and co-workers18 demonstrated that continuous rotation
of the sample around an axis at the “magic-angle” is not
necessary to obtain isotropic values of interactions in a 2D
experiment. Equal evolutions of magnetization for three discrete
positions of the rotor (at the “magic-angle” fromB0) instead of
continuous rotation are sufficient. The pictorial representation
of MAS presented above implies averaging of quadrics by
continuous rotation. This led to averaged values ofa2, b2, ...,
fi (see Appendix) using integralsIn (eq 4.2). If the same
averaging procedure is possible by discrete regularp “hops” of
the rotor, then one must fulfill the following equations:

for n ) 0, 1, 2 and everyγ. Basic trigonometric calculations
show thatp) 3 corresponds to the minimum number of “hops”
(Figure 10) and

T⊥ ) 1
2
[(cos2 R cos2 â + sin2 R)TXX + (sin2 R cos2 â +

cos2 R)TYY+ sin2 âTZZ] (4.3)

T| ) cos2 R sin2 â TXX + sin2 R sin2 â TYY+ cos2 â TZZ
(4.4)

1

R2
) cos2 R sin2 â TXX + sin2 R sin2 â TYY+ cos2 â TZZ

(4.5)

T⊥(XR
2 + YR

2) + T|ZR
2 ) 1 (4.6)

1

rRâ
2

) TRâ ) T⊥ sin
2 θ + T| cos

2 θ (4.7)

1
2
(3 cos2 â - 1)(XR

2 + YR
2) + (1- 3 cos2 â)ZR

2 ) (1
(4.8)

Figure 9. Pictorial representation of MAS in the case of the
heteronuclear dipolar interaction (TXX ) TYY> 0,TZZ < 0). In the static
rotor (left side), the crystallites are randomly oriented from the (XRYRZR)
rotor frame. The hyperboloids are drawn in the PAS of each crystallite
(only theZ axes are represented). The Euler angles (R,â,γ) (see Figure
1) connect the PAS and (XRYRZR). In the rapidly rotating rotor (right
side), the corresponding averaged hyperboloids are represented. One
notes thatΦ ) úm.M ) ((1- 3 cos2 â)/2)-1/2; N ) (1- 3 cos2 â)-1/2;
P ) ((3 cos2 â - 1)/2)-1/2; Q ) (3 cos2 â - 1)-1/2.

1

2π
∫02π

(cosγ)2-n (sinγ)n dγ )

1

p
∑
q)0

p-1[cos(γ + q
360

p )]2-n[sin(γ + q
360

p )]n (5.1)
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This is a direct representation of a MAH experiment. Recently,
novel schemes involving ultraslow rotation of the samples were
proposed in the literature and referred to as MAT or magic-
angle turning.26 Equations 5.1 and 5.2 can be easily generalized
to every (cosγ)r(sin γ)s trigonometric function (with fixedt )
(r + s)). If one wants to “average” such a function, classic
trigonometric calculations show thatt + 1 regular hops of the
rotor are sufficient. In other words,

for fixed t and everyγ. In this case, the figure obtained after
the successive hops is no longer an equilateral triangle (t ) 2,
see Figure 10) but a regular polygon oft + 1 vertices. Equation
5.3 will be of particular interest for the direct representation of
DAH or dynamic-angle hopping,27 involving higher-order
interactions (such as second-order quadrupolar interaction).

6. Variable-Angle Spinning

Whenθ * úm, rapid reorientation of the sample corresponds
to VAS. The effects of VAS are easily understood by using
the expression ofTRâ given in eq 4.7. The modulation of the
static line width is obtained by variations ofR and â. An
example is shown in Figure 11 withTXX ) TYY) 2, andTZZ )
1 (Tiso ) 5/3) in arbitrary units. The static line width is given
by an ellipsoid of revolution. Under VAS and using eq 4.7,

Moreover, the static line width is given by eq 2.10 withâ0
corresponding to the Euler angle betweenB0 and the uniqueZ
axis of the PAS in the static sample:

For fixedθ, the line width under rapid rotation of the sample is
then given by (Tâ)max and (Tâ)min. Most of the results of VAS
are illustrated in Figure 11.
Forθ ) 0°, no modulation of the static line width is observed.

In this case,â ) â0 and eqs 6.1 and 6.2 are strictly identical.
Forθ ) úm, a unique resonance atTiso ) 5/3 is observed, as

expected from MAS results (section 4).
Derivation of eq 6.1 gives (Tâ)max) (3+ cos2 θ)/2 and (Tâ)min

) (2 - cos2 θ) for θ < úm and (Tâ)max ) (2 - cos2 θ) and
(Tâ)min ) (3 + cos2 θ)/2 for θ > úm. In other words, the static
linewidth is modulated by the factor (3 cos2 θ - 1)/2 under
rapid VAS at θ. This is a general result of the VAS
experiment.19

As shown in Figure 11, all curves obtained for variableθ
intersect forâ ) úm. In the static sample, the corresponding
crystallites are at the “magic-angle” from the rotor axis. Under
rapid reorientation of the rotor, the corresponding averaged
quadric is a sphere of radius (Tiso)-1/2 ) (5/3)-1/2 (see section
4 and Figure 8). The intersection of this sphere byB0 at θ is
evidently independent ofθ andTúm ) Tiso (see eq 6.1 forâ )
úm). If Tiso ) 0 (as for the dipolar interaction), the averaged
sphere is at best represented by a point.

7. Miscellaneous

Finally, we illustrate with quadrics the rotation of samples
around two different axes (forI ) 1/2) and wonder about the
pictorial representation of higher-rank interactions (for instance,
the second-order quadrupolar interaction forI ) n/2 with n )
3, 5, 7, 9).
The rotation around two axes (I ) 1/2) (known as SAS or

switching-angle spinning) was first introduced by Bax and co-
workers28 in the frame of CP NMR. Indeed, at very high speed
MAS, the dipolar interaction that is responsible for the CP
transfer of magnetization between the abundant spin bath (for
instance1H) and the much less abundant nuclei (for instance
13C) is strongly affected by the rotation of the rotor and even

Figure 10. Pictorial representation of three regular hops of the rotor
during a magic-angle hopping (MAH) experiment. Increments ofγ are
120°.

1
3
[cos2 γ + cos2(γ + 120°) + cos2(γ + 240°)] ) 1

2
) I0

1
3
[cosγ sinγ + cos(γ + 120°) sin(γ + 120°) +

cos(γ + 240°) sin(γ + 240°)] ) 0) I1

1
3
[sin2 γ + sin2(γ + 120°) + sin2(γ + 240°)] ) 1

2
) I2
(5.2)

1

2π
∫02π

(cosγ)r (sinγ)s dγ )

1

t + 1
∑
q)0

t [cos(γ + q
360

t + 1)]
r [sin(γ + q

360

t + 1)]
s

(5.3)

TRâ ≡ Tâ ) 1
2
(3+ cos2 â) sin2 θ + (2- cos2 â) cos2 θ

(6.1)

TZ0Z0 ) 2- cos2 â0 (6.2)

Figure 11. Pictorial representation of variable-angle spinning (VAS)
for TXX ) TYY ) 2, andTZZ ) 1 (au).â is defined as in section 4 and
in Figure 8.θ corresponds to the angle betweenB0 and the rotor. For
â ) úm, the averaged quadric corresponds to a sphere of radius (Tiso)-1/2:
the intersection radius of this sphere in theB0 direction is independent
of θ and corresponds toTiso.
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vanishes. But, as stated above in section 6, NMR interactions
are not modulated by the macroscopic rotation ifθ ) 0° (even
at infinite rotation speed). The SAS methodology consists of
the building up of the13C magnetization under CP atθ ) 0°
(at least theoretically) and the detection of signals under high-
resolution conditions (i.e.θ ) úm). Zero-angle spinning
followed by MAS acquisition was also used for RF-driven spin
diffusion experiment.29 Recently, the SAS technique was
applied to complex silicate systems in order to obtain CSA data
in poorly resolved lines (by using the 90° - úm angles pair).30

In all cases, the acquisition of the spectra occurs at the “magic-
angle”, yielding high resolution in theF2 dimension. We now
show that high-resolution spectra may be obtained without
rotation at the “magic-angle”. We consider a quadric withTii
> 0. Under rapid rotation, averaged quadrics are given by eqs
4.3, 4.4, and 4.6. They correspond to ellipsoids of revolution.
Rotation of the rotor atθ1 andθ2 corresponds to the intersections
of the averaged quadrics byB0 at θ1 andθ2 (Figure 12). We
imposeθ1 ) 0°. The evolution of the rotor duringt at 0° is
followed by an evolution during 1- t at θ2 (with 0 < t < 1).
High resolution is attained if the following equation is fulfilled
for every set{T⊥,T|} (see eq 4.7):

Equation 7.1 is fulfilled for every set{T⊥,T|} when

The graph oft versusθ2 is represented in Figure 13. The
condition t > 0 implies θ2 > úm. Strictly speaking, this
experiment could be compared to the 2D-DAS experiment13,15

which is devoted to the suppression of second-order quadrupolar
broadening: after at1 evolution atθ1 ) 0°, a t2 evolution atθ
) θ2 would follow (after subsequent hopping of the rotation
axis between 0° andθ2). For

an echo would occur. This echo would be modulated byTiso

and subsequent double Fourier transformation would lead to a
2D “isotropic/anisotropic” correlation. It should be noted that
t ) 1/6 impliesθ2 ) 63.43° (see Figure 13) andt2/t1 ) 5. Indeed,
(0°, 63.43°) corresponds to one of the DAS angle pairs. Such
an experiment could be interesting for CP experiments involving
nuclei with strong CSA (such as very anisotropic13C nuclei or
“heavy elements” such as199Hg, 119Sn, and113Cd) and for which
the highest rotation speeds are required. The CP transfer would
be achieved at 0° (with maximum efficiency) and the detection
of signals would occur atθ2. The anisotropic patterns would
be then modulated by the factor (3 cos2 θ2 - 1)/2 in the
anisotropic dimension. As the CSAs are large, the choice of
θ2 in the vicinity of the “magic-angle” would lead to relatively
small broadening of the patterns, leading to an important S/N
gain. To our knowledge, such an experiment has not been
proposed in the literature. Nevertheless, it can be compared to
the CP-DAS experiment proposed by Baltisberger and co-
workers involving the (0°, 63.43°) angle pair and devoted to
second-order quadrupolar interactions.31

For higher-rank interactions (such as the second-order qua-
drupolar interaction), it is well-known that the energy levels of
the central transition of a quadrupolar nucleus withI ) 3/2,
5/2, 7/2, 9/2 when perturbed to the second-order are complex
fourth-degree trigonometric functions, involving the Euler angles
(R0,â0,γ0) between the EFG tensor andB0.32 Moreover,
sophisticated methods such as DAS,13 DOR,14 and MQ-MAS16

were recently implemented in order to suppress the second-
order broadening (the total suppression is actually impossible
under simple MAS or even VAS). All these techniques were
described by using spherical tensors, Wigner rotation operations,
and a careful analysis of the trigonometric expressions in terms
of P2(cosθ) andP4(cosθ) (whereP2 andP4 correspond to the
second- and fourth-degree Legendre polynomials;θ is the angle
between the rotor axis andB0). Obviously, the generalized
quadrics presented above can not give a satisfactory representa-
tion of second-order effects. Indeed, the quadrics led essentially
to second-degree trigonometric functions (see eqs 2.21a, 2.21b).
However, we will show in a next article that static second-order
effects can be well-represented by fourth-degree surfaces (for
every value ofηQ). Moreover, simple Cartesian transformations
of these novel surfaces under fast reorientation will allow us to
illustrate the effects of MAS, VAS, DAS, DAH, DOR, MQ-
MAS, and SAS33 on the central transition of quadrupolar nuclei.
Overtone spectroscopy34,35devoted to integer spins (such as14N,
I ) 1) will also be analyzed under static conditions and under

Figure 12. Pictorial representation of switching-angle spinning (SAS).
The rotor is rapidly rotated atθ1 ) 0° (during t) andθ2 (during (1-t))
from B0 (see text, section 7).J andK are given in Figure 8.

tTRâ(0°) + (1- t)TRâ(θ2) ) Tiso (7.1)

t )
1- 3 cos2 θ2

3(1- cos2 θ2)
and t > 0 (7.2)

t2
t1

) 1- t
t

) 2

1- 3 cos2 θ2

(7.3)

Figure 13. Graph of eq 7.2:t ) (1 - 3 cos2 θ2)/[3(1 - cos2 θ2)] vs
the angleθ2. The first angleθ1 is fixed at 0°.
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fast reorientation of the sample. In all cases, no explicit
reference to Legendre polynomials will be made.

8. Conclusions

In this paper, we have shown that generalized quadrics can
give a satisfactory representation of first-order interactions for
every set of principal components. The use of higher-degree
surfaces such as ovaloids is not necessary. Moreover, trans-
formation of these Cartesian tensors upon rapid reorientation
led to averaged quadrics with known analytical expressions.
These averaged quadrics allowed us to represent very simply
the effects of MAS, MAH, and VAS on first-order interactions.
The effect of SAS was also analyzed. However, the quadrics
are not suitable for the representation of second-order interac-
tions. Novel surfaces are required and will be presented in a
forthcoming paper.
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Appendix

The expression of the matrixP relating two frames oriented
by the Euler angles (R, â, γ) (defined as in Figure 1) (see section
2) is shown in Chart 1.
The expressions of matrix elementsTiRjR, calculated in the

(XRYRZR) frame (see section 4), is

with

a f i are given above.
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CHART 1

P) [a d g
b e h
c f i ]) [(cosR cosâ cosγ - sinR sinγ) (-cosR cosâ sinγ - sinR cosγ) (cosR sinâ)

(sinR cosâ cosγ + cosR sinγ) (-sinR cosâ sinγ + cosR cosγ) (sinR sinâ)
(-sinâ cosγ) (sinâ sinγ) (cosâ) ]

[(TiRjR)](XRYRZR) ) P-1(R,â,γ)[T]PASP(R,â,γ)

T1R1R ) a2TXX + b2TYY+ c2TZZ

T2R2R ) d2TXX + e2TYY+ f2TZZ

T3R3R ) g2TXX + h2TYY+ i2TZZ
T1R2R ) adTXX + beTYY+ cfTZZ

T1R3R ) agTXX + bhTYY+ ciTZZ

T2R3R ) dgTXX + ehTYY+ fiTZZ
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